Featured image of post DES Tests

DES Tests

DES formulations

ChatGPT and Grok seem to understand DES and SA at an acceptable level.


🧩 1. Original DES (SA-DES, 1997)

Reference: Spalart, P. R., Jou, W. H., Strelets, M., & Allmaras, S. R. (1997). Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach.

  • Base model: Spalart–Allmaras (RANS)
  • Modification: The wall-distance term ( d ) in the destruction term of SA is replaced by \[ \tilde{d} = \min(d, C_{DES} \Delta) \] where \( \Delta \) is the local grid length scale, and \( C_{DES} \approx 0.65 \).
  • Idea: When the grid spacing becomes smaller than the local boundary-layer thickness (in separated regions), the model switches to LES mode by limiting the eddy viscosity length scale.

Issue: In attached boundary layers on coarse grids, \( \Delta < d \) may occur unintentionally, causing grid-induced premature separation (ā€œmodeled-stress depletionā€).


āš™ļø 2. Delayed DES (DDES, 2006)

Reference: Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. K., & Travin, A. (2006). A new version of detached-eddy simulation, resistant to ambiguous grid densities.

  • Base model: SA or SA-neg

  • \[ d_{DDES} = d - f_d \max(0, d - C_{DES}\Delta) \]

    with \( f_d \to 1 \) in the boundary layer (RANS mode) and \( f_d \to 0 \) in separated flow (LES mode).

  • Benefit: Prevents premature activation of LES inside attached layers.


🧮 3. Improved Delayed DES (IDDES, 2009)

Reference: Shur, M., Spalart, P. R., Strelets, M., & Travin, A. (2008/2009). A hybrid RANS–LES approach with delayed-DES and wall-modeled LES capabilities.

  • Base model: SA or SA-neg

  • Modification: Refines DDES by adding:

    • Improved length-scale blending for smoother RANS–LES transition.
    • Explicit wall-modeling capability for high-Reynolds-number wall-bounded flows (WMLES mode).
    • Dynamic filter width depending on wall distance and grid anisotropy.

Use case: Widely used in industrial CFD (e.g. ANSYS Fluent, OpenFOAM). Suitable for external aerodynamics.


Original Spalart–Allmaras (SA) Turbulence Model

With Linear Suppression Term \( f_{t2} \)

This document formulates the Spalart–Allmaras one-equation turbulence model including the linear suppression (trip) term \( f_{t2} \). The formulation is consistent with the original SA model as used in early transition-sensitive and DES-capable implementations (e.g. SA, SA-neg, SA-DES).


1. Transport Equation

The transported variable is the modified kinematic eddy viscosity \( \tilde{\nu} \).

$$ \frac{\partial \tilde{\nu}}{\partial t}+ u_j \frac{\partial \tilde{\nu}}{\partial x_j}= P_{\tilde{\nu}}- D_{\tilde{\nu}}+ \frac{1}{\sigma} \left[ \frac{\partial}{\partial x_j} \left( (\nu + \tilde{\nu}) \frac{\partial \tilde{\nu}}{\partial x_j} \right)+ C_{b2} \left( \frac{\partial \tilde{\nu}}{\partial x_j} \right)^2 \right] $$

2. Production Term (with \( f_{t2} \))

\[ P_{\tilde{\nu}}= C_{b1} (1 - f_{t2}) \tilde{S} \tilde{\nu} \]

The linear suppression term \( f_{t2} \) reduces turbulence production in laminar or transitional regions.


3. Modified Vorticity Magnitude

\[ \tilde{S}= S+ \frac{\tilde{\nu}}{\kappa^2 d^2} f_{v2} \]

where

\[ S = \sqrt{2 \Omega_{ij} \Omega_{ij}} \]

4. Destruction Term

\[ D_{\tilde{\nu}}= C_{w1} f_w \left( \frac{\tilde{\nu}}{d} \right)^2 \]

5. Eddy Viscosity Relation

\[ \nu_t = \tilde{\nu} f_{v1} \]

with

\[ f_{v1}= \frac{\chi^3}{\chi^3 + C_{v1}^3}, \qquad \chi = \frac{\tilde{\nu}}{\nu} \]

6. Auxiliary Functions

6.1 Viscous Damping Function
\[ f_{v2}= 1- \frac{\chi}{1 + \chi f_{v1}} \]
6.2 Wall Destruction Function
\[ f_w= g \left[ \frac{1 + C_{w3}^6}{g^6 + C_{w3}^6} \right]^{1/6} \]

with

\[ g= r + C_{w2} (r^6 - r), \qquad r= \frac{\tilde{\nu}}{\tilde{S} \kappa^2 d^2} \]

7. Linear Suppression Function \( f_{t2} \)

\[ f_{t2}= C_{t3} \exp(-C_{t4} \chi^2) \]

This term:

  • Appears linearly in the production term
  • Suppresses turbulence growth in laminar regions
  • Is typically inactive in fully turbulent flows
  • Plays a role in transition-sensitive and DES/IDDES ψ-modifications

8. Model Constants

ConstantValue
\( \sigma \)\( 2/3 \)
\( C_{b1} \)0.1355
\( C_{b2} \)0.622
\( \kappa \)0.41
\( C_{v1} \)7.1
\( C_{w1} \)\( C_{b1}/\kappa^2 + (1 + C_{b2})/\sigma \)
\( C_{w2} \)0.3
\( C_{w3} \)2.0
\( C_{t3} \)1.2
\( C_{t4} \)0.5

9. Remarks

  • The function \( f_{t2} \) is optional and often disabled in fully turbulent RANS.
  • In SA-DES / DDES / IDDES, the wall distance \( d \) is replaced everywhere by a modified length scale.
  • In SA-neg, the same formulation applies, but \( \tilde{\nu} \) is allowed to become negative with modified handling of \( f_{v1}, f_{v2}, f_w \).

Rotation correction

https://turbmodels.larc.nasa.gov/spalart.html#saR

Spalart-Allmaras One-Equation Model with Rotation Correction (SA-R)

\[ P_{\tilde{\nu}}= C_{b1} (1 - f_{t2}) (\tilde{S} + C_{rot}\min(0,|\sigma|-S)) \tilde{\nu} \]

Where strain rate magnitude $|\sigma| = \sqrt{2\sigma_{ij}\sigma_{ij}}$ and strain rate is $\sigma_{ij} = 1/2(\partial_i u_j + \partial_j u_i)$.

Note that production is allowed to be negative here and the recommended coefficient is $C_{rot} = 2$.

Modified DES Length Scale

Shur, Mikhail L., et al. “A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities.” International journal of heat and fluid flow 29.6 (2008): 1638-1649.

The ψ-modified DES length becomes:

\[ d_{DES}= \min \left( d, \; \Psi \, C_{DES} \Delta \right) \]

Enlarges LES scale to maximum 10x when $f_{t2}$ is active.

or, in DDES / IDDES shielding form:

\[ d_{DDES}= d- f_d \max \left( 0, \; d - \Psi \, C_{DES} \Delta \right) \]

Very important note

ChatGPT says to replace only the denominator in destruction term as the DES length scale ($\frac{\tilde{\nu}}{\kappa^2 d^2}$). This is not completely right.

Ansys Fluent and OpenFOAM are confirmed to replace all wall distances in SA.

Cylinder flow

Re 5000, Ma 0.1.

Expected (Experimental) drag coef: 1.24 (4.96 in force for L=8)

CylinderB1 L8U2 mesh with ~1.09 million cells.

Visualizations

Fluent incompressible, Q-criterio

Fluent compressible, Q-criterion Fluent incompressible, TVR

Fluent compressible, TVR

Partial vs. full DES length replacement

O2

IDDES5RR2

IDDES3RR2

O4

Partial vs. full DES length replacement

IDDES2_O4

IDDES3RR2_O4

Full vs. modified upwind

$$ \hat F= \frac{1}{2}(F_L+F_R)-\frac{C_{dF}}{2}R|\Lambda|L(U_R-U_L) $$

with $C_{dF}=0.2$.

O2

IDDES3RR1_dF02

IDDES3RR1

O4

IDDES3RR2_dF02_O4

IDDES3RR2_O4

No $\Psi$ against $f_{t2}$

IDDES1_O4

Others

(Wrong Rot correction)

IDDES3R

Drag

Fluent compressible case drag

Fluent incompressible case drag

DNDSR drags

Case$C_d$errori0
CylinderB1_L8U2_Rawstart2_PdT05_restart1_TH3_.log1.3178e+00777.618000
CylinderB1_L8U2_Rawstart2_PdT05_restart2_TH3_IDDES0_.log1.3309e+00909.318000
CylinderB1_L8U2_Rawstart2_PdT05_restart2_TH3_IDDES0_O4_.log1.1945e+00-454.618000
CylinderB1_L8U2_Rawstart3_PdT05_TH3_ILES_O4_.log1.0525e+00-1874.718000
CylinderB1_L8U2_Rawstart4_PdT05_TH3_ILES_dF02R_O4_.log1.0370e+00-2029.911607
CylinderB1_L8U2_Rawstart4_PdT05_TH3_ILES_dF02R_O4_GW2_.log9.8482e-01-2551.811942
CylinderB1_L8U2_Rawstart4_PdT05_TH3_IDDES3RR1_.log1.2726e+00326.018000
CylinderB1_L8U2_Rawstart4_PdT05_TH3_IDDES3RR1_dF02_.log1.2477e+0077.417586
CylinderB1_L8U2_Rawstart4_PdT05_TH3_IDDES5RR2_.log1.2855e+00455.018000
CylinderB1_L8U2_Rawstart4_PdT05_TH3_IDDES3RR2_.log1.2654e+00253.918000
CylinderB1_L8U2_Rawstart4_PdT05_TH3_IDDES3RR2_O4_.log1.2005e+00-395.117823
CylinderB1_L8U2_Rawstart4_PdT05_TH3_IDDES3RR2_dF02_O4_.log1.1362e+00-1038.210520
CylinderB1_L8U2_Rawstart4_PdT05_TH3_IDDES3R_O4_.log1.2586e+00186.118000
CylinderB1_L8U2_Rawstart4_PdT05_TH3_IDDES3R_dF02_.log1.2136e+00-264.417670
CylinderB1_L8U2_Rawstart4_PdT05_TH3_IDDES3R_.log1.3048e+00648.118000
CylinderB1_L8U2_Raw4dT05_TH2_dF02_O4_GW2_.log1.0958e+00-1441.82739
CylinderB1_L8U2_Raw4dT05_TH2_dF02_O4_.log9.4938e-01-2906.20
CylinderB1_L8U2_Raw4dT05_TH2_O4_GW2_.log1.2364e+00-36.118000
CylinderB1_L8U2_Raw4dT05_TH3_O4_GW2_.log1.2654e+00254.118000
CylinderB1_L8U2_Raw4dT05_TH3_O4_.log1.2876e+00476.518000
CylinderB1_L8U2_Raw4dT05_TH3R_O4_GW2_.log1.2706e+00306.412820
CylinderB1_L8U2_Raw4dT05_TH3R_O4_.log1.2178e+00-222.112871

Drag Coefficients, filter window 500 (25 time units)

ILES results

Drag Coefficients, filter window 100 (5 time units)

Different DES

Drag Coefficients, filter window 100 (5 time units)

Drag Coefficients, filter window 100 (5 time units)

Drag Coefficients, filter window 100 (5 time units)

by Harry
Built with Hugo
Theme Stack designed by Jimmy