Distance Overset

距离场隐含几何信息(嵌入);提高搜索效率;并行

强调(额外)(高阶):

  • 时空精度
  • 减少非守恒误差

调研:西工大 蔡晋生 zhengyao ? 闫超 二九基地的 谁 李书杰?not found

Mesh of background (Cartesian): \(G\)

Mesh (Unstructured) \(A\), \(B\) …

For mesh \(A\):

  • 2 kinds of boundaries: Wall and Far
  • Distance field: \(d_A\)
  • Special definitions:
    • Beyond Wall boundaries: \(d_A<0\) or \(d_a \equiv-\infty \)
    • Beyond Far boundaries: \(d_a\equiv\infty\)
  • Interpolation onto $G$:
    • $d_{G,A}$
    • Refinement:
      • In Cartesian cell $\Omega_{G,i}$ of $G$
      • If $\Omega_{G,i}$ has intersection with $\partial \Omega_{A,\text{wall}}$, the $\partial \Omega_{A,\text{wall}}$ mesh is partially stored at $\Omega_{G,i}$, and local $d_{G,A}$ is refined using more points or local bnd representation
    • Therefore, it can be guaranteed:
      • Given arbitrary point, (to lookup from $G$ or $A$) $d_{G,A}$’s determination of $d_{G,A}\leq0$, $d_{G,A}=\infty$ is identical with $d_A$

For 2 meshes $A$ and $B$:

  • For each cell $\Omega_{A,i}$ in $A$:
    • Query points $p \in \Omega_{A,i}$
    • We have $d_{G,A}(p),d_{G,B}(p)$
      • If $\min{d_{G,A}(p),d_{G,B}(p)} < 0 \text{ or } \equiv -\infty$, set $p\in\Omega_{Hole}$
      • If $\min{d_{G,A}(p),d_{G,B}(p)} > 0$ and $\arg\min{d_{G,A}(p),d_{G,B}(p)} = A$, set $p\in\Omega_{A,Field}$
      • If $\min{d_{G,A}(p),d_{G,B}(p)} > 0$ and $\arg\min{d_{G,A}(p),d_{G,B}(p)} = B$, set $p\in\Omega_{A,Recv,B}$
Licensed under CC BY-NC-SA 4.0
by Harry
Built with Hugo
Theme Stack designed by Jimmy