距离场隐含几何信息(嵌入);提高搜索效率;并行
强调(额外)(高阶):
- 时空精度
- 减少非守恒误差
调研:西工大 蔡晋生 zhengyao ? 闫超 二九基地的 谁 李书杰?not found
Mesh of background (Cartesian): \(G\)
Mesh (Unstructured) \(A\), \(B\) …
For mesh \(A\):
- 2 kinds of boundaries:
Wall
andFar
- Distance field: \(d_A\)
- Special definitions:
- Beyond
Wall
boundaries: \(d_A<0\) or \(d_a \equiv-\infty \) - Beyond
Far
boundaries: \(d_a\equiv\infty\)
- Beyond
- Interpolation onto $G$:
- $d_{G,A}$
- Refinement:
- In Cartesian cell $\Omega_{G,i}$ of $G$
- If $\Omega_{G,i}$ has intersection with $\partial \Omega_{A,\text{wall}}$, the $\partial \Omega_{A,\text{wall}}$ mesh is partially stored at $\Omega_{G,i}$, and local $d_{G,A}$ is refined using more points or local bnd representation
- Therefore, it can be guaranteed:
- Given arbitrary point, (to lookup from $G$ or $A$) $d_{G,A}$’s determination of $d_{G,A}\leq0$, $d_{G,A}=\infty$ is identical with $d_A$
For 2 meshes $A$ and $B$:
- For each cell $\Omega_{A,i}$ in $A$:
- Query points $p \in \Omega_{A,i}$
- We have $d_{G,A}(p),d_{G,B}(p)$
- If $\min{d_{G,A}(p),d_{G,B}(p)} < 0 \text{ or } \equiv -\infty$, set $p\in\Omega_{Hole}$
- If $\min{d_{G,A}(p),d_{G,B}(p)} > 0$ and $\arg\min{d_{G,A}(p),d_{G,B}(p)} = A$, set $p\in\Omega_{A,Field}$
- If $\min{d_{G,A}(p),d_{G,B}(p)} > 0$ and $\arg\min{d_{G,A}(p),d_{G,B}(p)} = B$, set $p\in\Omega_{A,Recv,B}$